Rabu, 04 Januari 2012


manfaat komputasi dalam obat

Kimia Komputasi dalam Pengembangan Obat

Metode kimia komputasi untuk tujuan disain molekul baru, tetutama senyawa obat, serta prediksi sifat fisiko-kimia telah menjadi metode pilihan utama sebagian besar industri farmasi berkaitan dengan pengembangan maupun penemuan obat. Aplikasi metode yang juga disebut in silico ini, berawal dari postulat dasar dalam paradigma disain obat klasik yang menyatakan bahwa efek obat dalam tubuh manusia merupakan suatu konsekuensi “molecular recognition” antara ligan (dalam hal ini obatdan sutau makromolekul (target).
Aktivitas farmakologi ligan terhadap dudukan kerjanya (action site) sangat ditentukan oleh tatanan ruang dan kerapatan elektron atom-atom ligan, dan juga bagaimana atom-atom tersebut berinteraksi dengan molekul target atau “biological conterpart” (Bohm & Klebe, 1996). Struktur, dinamika, dan interaksi demikian memungkinkan suatu karakterisasi menggunakan kimia komputasi dilakukan. Misalnya, pendekatan berbasis mekanika molekular (molecular mechanics) secara efisien dapat membantu penemuan kandidat-kandidat obat baru, dan metode komputasi yang tidak mahal ini sekarang secara rutin digunakan di dalam disain obat (Jorgensen, 2004).
Meskipun demikian, jika deskripsi sifat elektron yang diperlukan untuk tujuan disain tersebut, maka penggunaan mekanika kuantum sangat beperan. Sesungguhnya pendekatan kimia komputasi berbasis mekanika kuantum selain menjelaskan efek elektronik kuantum, juga mampu menjelaskan pembentukan dan pemutusan ikatan kimia, efek polarisai, perpindahan muatan, dst., biasanya mampu memperkirakan energi molekul lebih akurat (Cavali et al., 2006). Aplikasi mekanika kuantum berbasis ligan di dalam disain obat sejak dahulu telah diarahkan dalam pengamatan energi, geometri, dan distribusi elektron (misalnya HOMO, LUMO, momen dipol, dst.) molekul organik kecil. Perhitungan mekanika kuantum secara rutin telah juga dilakukan dalam analisis QSAR (Quantitative-Structure Activity Relationship) klasik (Lepp & Chuman, 2005), QSAR 3D (Aguirre et al., 2005) dan juga mengembangkan deskriptor kuantum (Wan et al., 2004) untuk digunakan dalam penelitian korelasi struktur-aktivitas.
Hal menarik dalam penggunaan kimiakomputasi berkaitan dengan molekul target di dalam disain obat adalah telaah analisis reaksi enzimatik dalam sistem biologis yang memiliki relevansi farmakologi (Gogonea et al., 2001), simulasi ini memungkinkan menjelaskan mekanisme substrat (inhibitor)-enzim dan lebih lanjut terhadap interaksi substrat enzim pada keadaan transisi melalui analisis energi ikat (binding energy).

manfaat kimia komputasi untuk pembelajaran

1. Dapat menghitung sifat molekul yang kompleks dan hasil perhitungannya berkorelasi secara signifikan dengan eksperimen.

2. Dapat sebagai alat hitung –seperti halnya kalkulator- untuk membantu penyelesaian secara numerik dari persamaan matematika yang menggambarkan sifat sistem, misalnya dalam penyelesaian perhitungan stokiometri, termasuk juga otomatisasi alat ukur yang dapat mengkonversi signal elektronik menjadi data numerik.

3. Dapat sebagai alat visualisasi dan animasi

4. Membantu kita mengeksplorasi sifat senyawa dan pada umumnya program tersebut telah dilengkapi dengan visualisasi dan animasi, seperti program HyperChem, Gaussian, Turbomol, Rasmol dll.

5. Menghitung sifat-sifat molekul dan perubahannya maupun melakukan simulasi terhadap sistem-sistem besar (makromolekul seperti protein atau sistem banyak molekul seperti gas, cairan, padatan, dan Kristal cair), dan menerapkan program tersebut pada sistem kimia nyata.


6. Simulasi terhadap makromolekul (seperti protein dan asam nukleat) dan sistem besar bisa mencakup kajian konformasi molekul dan perubahannya (mis. Proses denatrasi protein), perubahan fasa, serta peramalan sifat-sifat makroskopik (seperti kalor jenis) berdasarkan perilaku di tingkat atom.

sumber : 
http://chittaputri.blogspot.com/2011/12/manfaat-kimia-komputasi-untuk.html

istilah dalam kimia komputasi


  • Molecular modeling merupakan suatu metode untuk merancang dan menganalisis struktur dan sifat-sifat molekul tertentu dengan mengunakan teknik kimia komputasional dan teknik visualisasi grafis yang bertujuan untuk menyediakan struktur geometri tiga dimensi yang sesuai dengan parameter kondisi yang telah ditentukan. (Leach, 2001).
  • Molecular docking merupakan suatu teknik yang digunakan untuk mempelajari interaksi yang terjadi dari suatu kompleks molekul. Molecular docking dapat memprediksikan orientasi dari suatu molekul ke molekul yang lain ketika berikatan membentuk kompleks yang stabil. (Funkhouser, 2007).
  • Molecular Operating Environment (MOE) dikembangkan Chemical Computing Group (www.chemcomp.com). MOE selain menawarkan fasilitas yang cukup lengkap juga user-friendly sehingga cocok digunakan dalam pembelajaran. Hanya saja aplikasi kimia komputasi yang user-friendly biasanya mahal sehingga alasan efisiensi biaya tidak lagi relevan.
  • OV (Orbital Viewer) adalah perangkat lunak gratis untuk menggambarkan orbital atom dan molekul, membuat animasi maupun untuk melihat penampang lintang (struktur dalam) orbital. Dapat pula dibuat gambar 3D (yang dapat dilihat dengan kacamata 3D sperti yang digunakan untuk melihat sinetron 3D). (Modul Struktur dan Kereaktifan Kimia Anorganik, Dr. Ismunandar)
  • ab initio berasal dari bahasa latin yang diberikan untuk menandai perhitungan yang diturunkan secara langsung dari prinsip-prinsip teoritis, tanpa memasukkan data eksperimen. Ab initio mengacu pada perhitungan mekanika kuantum melalui beberapa pendekatan matematis, seperti penggunaan persamaan yang disederhanakan (Born Oppenheimer approximation) atau pendekatan untuk penyelesaian persamaan differensial. (PENGANTAR KIMIA KOMPUTASI, Dr. Harno Dwi Pranowo, M.Si)
  • Kimia kuantum adalah sebuah aplikasi mekanika kuantum pada kimia. Kimia kuantum memungkinkan kita untuk memahami dan memprediksi struktur, sifat dan mekanisme reaksi dari berbagai bahan.
  • BS (Balls & Sticks) adalah perangkat lunak gratis untuk menggambarkan struktur kimia, terutama kristal, dalam 3D dan dapat menghasilkan gambar bitmap yang dapat disalin ke clipboard dan ditempelkan (paste) di dokumen pengolah kata (Word misalnya).
  • Ab initio

    Istilah “Ab initio” adalah bahasa latin untuk “dari awal”. Nama ini diberikan kepada perhitungan yang berasal langsung dari prinsip-prinsip teoritis, tanpa masuknya data eksperimen. Sebagian besar saat ini adalah mengacu ke perhitungan perkiraan kuantum mekanik. Perkiraan yang dibuat biasanya perkiraan matematika, seperti menggunakan bentuk fungsional sederhana untuk fungsi atau mendapatkan solusi perkiraan untuk sebuah persamaan diferensial.
    Jenis yang paling umum perhitungan ab initio ini disebut perhitungan Hartree Fock (disingkat HF), di mana pendekatan utama disebut pendekatan lapangan pusat. Ini berarti bahwa tolakan Coulomb elektron-elektron tidak secara khusus diperhitungkan. Namun, itu efek bersih adalah termasuk dalam perhitungan. Ini adalah variasi perhitungan, yang berarti bahwa energi perkiraan dihitung semua sama atau lebih besar daripada energi yang tepat. Energi dihitung biasanya dalam satuan yang disebut Hartrees (1 H = 27,2114 eV). Karena pendekatan lapangan pusat, energi dari perhitungan HF selalu lebih besar daripada energi yang tepat dan cenderung ke nilai membatasi disebut batas Hartree Fock.
    Pendekatan kedua dalam perhitungan HF adalah bahwa fungsi gelombang harus dijelaskan oleh beberapa bentuk fungsional, yang hanya diketahui secara tepat untuk satu beberapa sistem elektron. Fungsi yang paling sering digunakan adalah kombinasi linier dari orbital tipe Slater exp (-ax) atau jenis orbital Gaussian exp (-ax ^ 2), disingkat STO dan GTO. Fungsi gelombang terbentuk dari kombinasi linier dari orbital atom atau lebih sering dari kombinasi linear dari fungsi dasar. Karena pendekatan ini, perhitungan HF paling memberikan energi dihitung lebih besar dari batas Fock Hartree. Himpunan tepat fungsi dasar yang digunakan sering ditentukan oleh singkatan, seperti STO-3G atau 6-311 g + + **.
    Sejumlah jenis perhitungan dimulai dengan perhitungan HF kemudian benar untuk tolakan elektron-elektron eksplisit, disebut sebagai korelasi. Beberapa metode ini Mohlar-Plesset teori perturbasi (MPN, dimana n adalah urutan koreksi), yang Generalized Valence Bond (GVB) metode, Multi-Konfigurasi Self Konsisten Lapangan (MCSCF), Interaksi konfigurasi (CI) dan teori Cluster Ditambah (CC). Sebagai kelompok, metode ini disebut sebagai perhitungan berkorelasi.
    Sebuah metode, yang menghindari membuat kesalahan HF di tempat pertama disebut Quantum Monte Carlo (QMC). Ada beberapa rasa QMC .. variasional, difusi dan fungsi Green. Metode-metode ini bekerja dengan fungsi gelombang dan mengevaluasi secara eksplisit berkorelasi integral numerik menggunakan integrasi Monte Carlo. Perhitungan ini bisa sangat memakan waktu, tetapi mereka mungkin metode yang paling akurat dikenal saat ini.
    Metode ab initio adalah alternatif teori kerapatan fungsional (DFT), di mana total energi dinyatakan dalam total kepadatan elektron, bukan fungsi gelombang. Dalam jenis ini perhitungan, ada Hamilton dan perkiraan ekspresi perkiraan untuk kepadatan total elektron.
    Sisi baik metode ab initio adalah bahwa mereka akhirnya bertemu dengan solusi yang tepat, setelah semua perkiraan yang dibuat cukup kecil di besarnya. Namun, konvergensi ini tidak montonic. Kadang-kadang, perhitungan terkecil memberikan hasil yang terbaik untuk properti tertentu.
    Sisi buruk dari metode ab initio adalah bahwa mereka mahal. Metode ini sering mengambil sejumlah besar waktu komputer cpu, memori dan ruang disk. Metode skala HF sebagai N 4, dimana N merupakan jumlah fungsi dasar, sehingga perhitungan dua kali lebih besar membutuhkan 16 kali lebih lama untuk menyelesaikan. perhitungan Korelasi sering skala jauh lebih buruk dari ini. Dalam prakteknya, solusi sangat akurat hanya dapat diperoleh ketika molekul berisi setengah lusin elektron atau kurang.
    Secara umum, perhitungan ab initio kualitatif memberikan hasil yang sangat baik dan dapat memberikan hasil kuantitatif semakin akurat sebagai molekul yang dimaksud menjadi lebih kecil.

    Semiempirical

    Semiempirical perhitungan ditetapkan dengan struktur umum yang sama sebagai perhitungan HF. Dalam kerangka ini, potongan informasi tertentu, seperti dua integral elektron, yang didekati atau sama sekali dihilangkan. Dalam rangka untuk mengoreksi kesalahan diperkenalkan dengan menghilangkan bagian dari perhitungan, metode ini parameter, dengan melakukan suaian kurva dalam beberapa parameter atau nomor, untuk memberikan kesepakatan yang terbaik dengan data eksperimen.
    Sisi baik dari perhitungan semiempirical adalah bahwa mereka jauh lebih cepat daripada perhitungan ab initio.
    Sisi buruk dari perhitungan semiempirical adalah bahwa hasilnya bisa tidak menentu. Jika molekul yang sedang dihitung mirip dengan molekul dalam basis data yang digunakan untuk parameterisasi metode, maka hasilnya mungkin akan sangat baik. Jika molekul yang dihitung secara signifikan berbeda dari apa pun di set parameterisasi, jawaban mungkin sangat miskin.
    perhitungan Semiempirical telah sangat sukses dalam deskripsi kimia organik, di mana hanya ada beberapa elemen digunakan secara luas dan molekul yang ukuran sedang. Namun, metode semiempirical telah dirancang khusus untuk deskripsi kimia anorganik juga.

    Pemodelan solid state

    Struktur elektronik dari kristal tak terbatas didefinisikan oleh struktur plot band, yang memberikan energi orbital elektron untuk setiap titik di k-ruang, yang disebut zona Brillouin. Sejak ab initio dan perhitungan semiempirical hasil energi orbital, mereka dapat diterapkan untuk band perhitungan struktur. Namun, jika memakan waktu untuk menghitung energi untuk molekul, itu bahkan lebih memakan waktu untuk menghitung energi untuk daftar poin di zona Brillouin.
    perhitungan struktur Band telah dilakukan untuk sistem yang sangat rumit, namun perangkat lunak belum cukup otomatis atau cukup cepat sehingga siapa pun tidak struktur band santai. Jika Anda ingin melakukan perhitungan struktur band, Anda sebaiknya berharap untuk menempatkan banyak waktu dalam usaha Anda.

    Mekanika molekul

    Jika molekul terlalu besar untuk secara efektif menggunakan pengobatan semiempirical, masih mungkin untuk model perilaku itu dengan menghindari mekanika kuantum benar-benar. Metode disebut sebagai mekanika molekul membentuk ekspresi aljabar sederhana untuk energi total senyawa, tanpa keharusan untuk menghitung fungsi gelombang atau kepadatan total elektron. Ekspresi energi terdiri dari persamaan klasik sederhana, seperti persamaan osilator harmonik dalam rangka untuk menggambarkan energi yang berkaitan dengan ikatan peregangan, membungkuk, rotasi dan gaya antarmolekul, seperti interaksi van der Waals dan ikatan hidrogen. Semua konstanta dalam persamaan ini harus diperoleh dari data percobaan atau perhitungan ab initio.
    Dalam metode mekanika molekul, basis data senyawa yang digunakan untuk parameterisasi metode (satu set parameter dan fungsi yang disebut medan gaya) sangat penting untuk keberhasilan itu. Dimana sebagai metode semiempirical mungkin parameter terhadap satu set molekul organik, sebuah metode mekanika molekul mungkin parameter terhadap kelas khusus molekul, seperti protein. Medan gaya seperti ini hanya akan diharapkan memiliki relevansi untuk menjelaskan protein lain.
    Sisi baik dari mekanika molekuler adalah bahwa hal itu memungkinkan pemodelan molekul besar, seperti protein dan segmen dari DNA, sehingga alat utama ahli biokimia komputasi.
    Sisi buruk dari mekanika molekul adalah bahwa ada banyak sifat-sifat kimia yang bahkan tidak didefinisikan dalam metode ini, seperti keadaan tereksitasi elektronik. Dalam rangka untuk bekerja dengan sistem yang sangat besar dan rumit, sering molekul mekanik paket perangkat lunak yang paling kuat dan paling mudah untuk menggunakan antarmuka grafis. Karena itu, mekanik kadang-kadang digunakan karena mudah, tetapi belum tentu cara yang baik untuk menjelaskan sistem.

    Dinamika molekul

    dinamika molekul terdiri dari memeriksa perilaku tergantung waktu dari molekul, seperti gerak getaran atau gerak Brown. Hal ini paling sering dilakukan dalam sebuah tulisan mekanik klasik mirip dengan perhitungan mekanika molekul.
    Penerapan dinamika molekuler untuk pelarut / sistem terlarut memungkinkan perhitungan properti seperti koefisien difusi atau fungsi distribusi radial untuk digunakan dalam perawatan mekanik statistik. Biasanya skema perhitungan pelarut / zat terlarut adalah bahwa jumlah molekul (mungkin 1000) diberikan beberapa posisi awal dan kecepatan. posisi baru menghitung waktu kecil kemudian berdasarkan gerakan ini dan proses ini itterated untuk ribuan langkah untuk membawa sistem untuk keseimbangan dan memberikan gambaran statistik yang baik dari fungsi distribusi radial.
    Dalam rangka untuk menganalisa getaran molekul tunggal, banyak dinamika langkah-langkah yang dilakukan, maka data tersebut Fourier berubah menjadi domain frekuensi. Sebuah puncak yang diberikan dapat dipilih dan diubah kembali ke domain waktu, untuk melihat apa gerakan pada frekuensi yang terlihat seperti.

    Statistik Mekanika

    Mekanika statistika adalah matematika berarti mengekstrapolasi sifat termodinamika bahan curah dari deskripsi molekul material. Banyak mekanika statistik masih pada tahap kertas dan pensil teori, karena mekanika kuantum tidak dapat menyelesaikan persamaan Schrödinger tepat lagi, mekanika statistik tidak benar-benar memiliki bahkan titik awal yang baik untuk perlakuan yang benar-benar ketat. Mekanika statistika perhitungan sering ditempelkan ke akhir perhitungan inito ab untuk properti fasa gas. Untuk properti fasa terkondensasi, sering molekul dinamika perhitungan diperlukan dalam rangka untuk melakukan percobaan komputasi.

    Termodinamika

    Termodinamika adalah salah satu deskripsi paling baik dikembangkan kimia matematika. Sangat sering setiap pengobatan termodinamika yang tersisa untuk pena dan kertas kerja sepele karena banyak aspek kimia begitu akurat digambarkan dengan ekspresi matematika yang sangat sederhana.

    Struktur-Properti Hubungan

    Struktur-properti hubungan yang kualitatif atau kuantitatif didefinisikan secara empiris hubungan antara struktur molekul dan sifat diamati. Dalam beberapa kasus ini mungkin tampak duplikat hasil mekanik statistik, namun sistem struktur-properti hubungan tidak perlu didasarkan pada prinsip-prinsip teoritis ketat.
    Kasus yang paling sederhana hubungan struktur-properti aturan jempol kualitatif. Misalnya, kimia polimer yang berpengalaman mungkin dapat memprediksi apakah polimer akan halus atau rapuh berdasarkan geometri dan ikatan monomer.
    Ketika struktur-properti hubungan yang disebutkan dalam literatur saat ini, biasanya menyiratkan hubungan matematis kuantitatif. Hubungan ini paling sering diperoleh dengan menggunakan software curve fitting untuk menemukan kombinasi linear dari sifat molekul, yang paling mereproduksi properti yang diinginkan. Sifat-sifat molekul biasanya diperoleh dari perhitungan pemodelan molekul. deskriptor molekul lain seperti berat molekul atau deskripsi topologi juga digunakan.
    Ketika properti yang dijelaskan adalah properti fisik, seperti titik didih, ini disebut sebagai Kuantitatif Struktur-Properti Relationship (QSPR). Ketika properti yang dijelaskan adalah jenis aktivitas biologis (seperti aktivitas obat), ini disebut sebagai Kuantitatif Struktur-Aktivitas Relationship (HKSA).

    Perhitungan Simbolik

    perhitungan simbolik dilakukan bila sistem yang terlalu besar untuk sebuah deskripsi atom-by-atom masih layak pada setiap tingkat pendekatan. Sebuah contoh mungkin gambaran membran dengan menjelaskan lipid individu sebagai perwakilan beberapa poligon dengan beberapa ekspresi untuk energi interaksi. Pengobatan semacam ini digunakan untuk biokimia komputasi dan bahkan mikrobiologi.

    Kecerdasan Buatan

    Teknik diciptakan oleh ilmuwan komputer tertarik dalam kecerdasan buatan telah diterapkan sebagian besar berupa rancangan obat dalam beberapa tahun terakhir. Metode ini juga pergi dengan nama De Novo atau desain obat rasional. Skenario umum adalah bahwa beberapa situs fungsional telah diidentifikasi dan diinginkan untuk datang dengan struktur molekul yang akan berinteraksi dengan situs bahwa untuk menghalangi fungsi itu. Daripada memiliki seorang ahli kimia mencoba ratusan atau ribuan kemungkinan dengan program mekanika molekul, mekanika molekul dibangun ke dalam program kecerdasan buatan, yang mencoba jumlah besar “masuk akal” kemungkinan dalam fasion otomatis. Jumlah teknik untuk menggambarkan “cerdas” bagian dari operasi ini begitu beragam yang tidak mungkin untuk membuat generalisasi tentang bagaimana hal ini diimplementasikan dalam program.

    Bagaimana melakukan proyek riset komputasi

    Bila menggunakan kimia komputasi untuk menjawab pertanyaan kimia, masalah jelas adalah bahwa Anda perlu tahu bagaimana menggunakan perangkat lunak. Permasalahan yang terjawab adalah bahwa Anda perlu untuk mengetahui seberapa baik jawabannya akan menjadi. Berikut adalah daftar periksa untuk diikuti.
    Apa yang Anda ingin tahu? Seberapa akurat? Mengapa? Jika Anda tidak dapat menjawab pertanyaan-pertanyaan, maka Anda bahkan tidak memiliki proyek penelitian belum.
    Seberapa akurat Anda memprediksi jawabannya akan? Dalam kimia analitik, Anda melakukan sejumlah pengukuran identik kemudian bekerja keluar kesalahan dari deviasi standar. Dengan percobaan komputasi, melakukan hal yang sama harus selalu memberikan hasil yang sama persis. Cara yang Anda memperkirakan kesalahan Anda adalah untuk membandingkan sejumlah perhitungan mirip dengan jawaban eksperimental. Ada artikel dan kompilasi dari studi ini. Jika tidak ada, Anda akan perlu menebak metode mana yang harus masuk akal, didasarkan pada asumsi itu kemudian melakukan penelitian sendiri, sebelum Anda dapat menerapkannya pada Anda tidak diketahui dan punya ide seberapa bagus perhitungannya. Ketika seseorang hanya memberitahu Anda dari atas kepala mereka metode apa yang digunakan, mereka juga memiliki jumlah wajar dari jenis informasi hafal, atau mereka tidak tahu apa yang mereka bicarakan. Waspadalah terhadap seseorang yang memberitahu Anda sebuah program yang diberikan adalah baik hanya karena itu adalah satu-satunya mereka tahu bagaimana menggunakan, bukan mendasarkan jawaban mereka pada kualitas hasil.
    Berapa lama Anda berharap untuk mengambil? Jika dunia yang sempurna, Anda akan memberitahu PC Anda (suara masukan tentu saja) untuk memberikan solusi yang tepat untuk persamaan Schrödinger dan melanjutkan hidup Anda. Namun, sering kali perhitungan ab initio akan memakan sehingga waktu yang dibutuhkan waktu satu dekade untuk melakukan perhitungan tunggal, jika Anda bahkan memiliki mesin dengan cukup memori dan ruang disk. Namun, sejumlah metode yang ada karena setiap yang terbaik untuk situasi tertentu. Caranya adalah dengan menentukan mana yang terbaik untuk proyek Anda. Sekali lagi, jawabannya adalah untuk melihat ke dalam literatur dan melihat berapa lama masing-masing diperlukan. Jika satu-satunya yang Anda tahu adalah bagaimana skala perhitungan, melakukan perhitungan sederhana yang mungkin kemudian gunakan persamaan skala untuk memperkirakan berapa lama waktu yang diperlukan untuk melakukan semacam perhitungan bahwa Anda telah diprediksi akan memberikan akurasi yang diinginkan.
    Apa perkiraan sedang dilakukan? Yang signifikan? Ini adalah bagaimana Anda menghindari tampak seperti orang bodoh yang lengkap, ketika anda berhasil melakukan perhitungan yang sampah lengkap. Sebuah contoh akan mencoba untuk mencari tahu tentang gerak getaran yang sangat anharmonic, ketika perhitungan menggunakan pendekatan osilator harmonik.
    Setelah Anda akhirnya menjawab semua pertanyaan ini, Anda siap untuk benar-benar melakukan perhitungan. Sekarang Anda harus menentukan software apa yang tersedia, berapa biayanya dan bagaimana menggunakannya. Perhatikan bahwa dua program dari jenis yang sama (ab initio yaitu) dapat menghitung sifat-sifat yang berbeda, sehingga Anda harus memastikan program ini tidak persis apa yang Anda inginkan.
    Ketika Anda sedang belajar bagaimana menggunakan sebuah program, Anda dapat mencoba untuk melakukan puluhan perhitungan yang akan gagal karena Anda dibangun masukan salah. Jangan gunakan molekul proyek Anda untuk melakukan hal ini. Membuat semua kesalahan Anda dengan sesuatu yang sangat mudah, seperti molekul air. Dengan begitu Anda tidak membuang sejumlah besar waktu.

    Visualisasi

    visualisasi data adalah proses menampilkan informasi dalam jenis representasi piktorial atau grafis. Sejumlah program komputer yang sekarang tersedia untuk menerapkan skema pewarnaan data atau bekerja dengan tiga dimensi representasi.

manfaat dari beberapa software kimia komputasi


Berikut adalah beberapa aplikasi yang bisa digunakan untuk mendukung pembelajaran kimia.
  • JMol (Platform : Windows, Linux, Mac)
    Gambar Aplikasi Jmol dgn Java AppletJmol ini gartis, merupakan penampil strukutur molekul tiga dimensi (molecule viewer) yang dapat digukan secara bebas oleh siapapun yang menekuni bidang kimia dan biokimia. Aplikasi ini merupakan cross-platform, berjalan di sistem operasi Windows, Mac OS X, dan Linux / Unix. Fitur yang dimilikinya di antaranya membaca berbagai jenis file dan output dari program kimia kuantum, dan animasi file multi-frame. JmolApplet adalah applet web browser yang dapat diintegrasikan ke dalam halaman situs. Aplikasi Jmol adalah aplikasi Java standalone yang berjalan di desktop. JmolViewer merupakan seperangkat alat yang dapat diintegrasikan ke dalam aplikasi Java lainnya.
  • ACD/ChemSketch Freeware (Platform : Windows, Linux)
    Chemsketch adalah software grafis untuk menggambar hal yang ada hubungannya dengan kimia . Bisa menggambar secara manual atau menggunakan templet yang disediakan. Klik dan gambar molekul, ion, stereobonds, teks, poligon, panah, serta perlengkapan laboratorium, dll termasuk menentukan secara otomatis massa suatu atom atau molekul. Kita juga dapat memperkirakan densitas, indeks bias, volume molar, dll.  Selain itu dari ACDLabs juga menawarkan beberapa download gratis untuk utilitas yang dapat dipergunakan dalam ChemSketch sehingga lebihpowerfull.
    • Molegro Molecular Viewer (Platform: Windows, Linux, dan Mac OS X)

    • Sumber http://ahsystemsgroup.com
      Aplikasi gratis dengan multiplatform yang digunakan untuk visualisasi molekul dalam format PDB, SDF, Mol2, dan MVDML. Fiturnya meliputi pembuatan molekul secara otomatis, visualisasi permukaan molekul dan backbone.
    Ukuran file untuk windows sebesar 5,52 MB
    Ukuran file untuk windows sebesar 9,41 MB
    Untuk MacOSX saya belum coba, menungggu untuk punya MacOSX dahulu, bagi yang mau menyumbangkan Mac-nya untuk saya, dengan senang hati saya menerimanya :) .
    Untuk file-file dengan ekstensi pdb, bisa dibuat sendiri dengan aplikasi di atas atau men-download-nya dari elchem.kaist.ac.kr. Model molekul yang tersedia di situs ini adalah molekul-molekul organik dari yang paling sederhana hingga yang cukup kompleks.
    • Symyx Chime dan Symyx Draw (Platform: Windows dan MacOSX, Linux belum tersedia)

    • Sumber http://blog.goo.ne.jp/
      Kedua aplikasi ini gratis (no fee) siapapun boleh mengunduhnya dan memakainya secara cuma-cuma. Sebelum mengunduhnya diharuskan melakukan registrasi dengan mengisikan beberapa data yang empunya situs perlukan. Sayang untuk platform linux belum tersedia jadi mesti menggunakan Wine agar bisa menjalankannya di linux. Kedua software ini saling melengkapi sehingga kita bisa memanfaatkannya dalam program pengajaran di kelas untuk mata pelajaran kimia.
      Symyx Chime versi 2.6 SP8 berformat zip berukuran 3,9 MB. Chime merupakan plug-in yang secara interaktif menampilkan molekul 2D (dua dimensi) dan 3D (tiga dimensi) langsung di halaman Web. Kita juga dapat memutar, memformat, dan menyimpan molekul untuk digunakan dalam program lain.
      Symyx Draw versi 3.3 berukuran cukup besar dalam format zip (66 MB). Dengan aplikasi ini kita bisa menyisipkan model molekul yang kita buat ke dalam halaman situs, dokumen, spreadsheet maupun presentasi.
    • Kalzium (Platform: Linux)
    • Kalzium adalah nama sebuah software (open source software - OSS) yang memanfaatkan tabel periodik untuk mengeksplorasi setiap unsur. Tapi ternyata tidak sekedar tabel periodik biasa, lebih dari sekedar tabel periodik. Kalzium berasal dari bahasa Jerman dari kata kalsium. Saat ini Kalzium sampai di versi Hidrogen. Untuk diketahui semenjak Kalzium menjadi aplikasi standalone ia versinya akan dinamai dengan urutan nama unsur dalam tabel periodik.Materi-materi pelajaran kimia, baik di kelas 10, kelas 11 IPA, maupun kelas 12 IPA bab-bab tertentu sangatlah tepat memanfaatkan kehebatan Kalzium. Tentu ini hanya merupakan alternatif dalam penggunaan media pembelajaran. Sampai saat ini Kalzium belum mendukung untuk sitem operasi Windows. Hanya bisa berjalan untuk sistem operasi Linux. Oleh karena itu di sarankan pengguna yang ingin mencobanya sebaiknya meningstall sistem operasi Linux, gratis dan halal. Silahkan pilih distro yang disukai.
    • MarvinSketch (Platform: Windows, Linux, MacOS)
    • Banyak hal yang bisa dimanfaatkan dari MarvinSketch untuk pengajaran kimia. Gambar dan animasi molekul dapat dibuat dengan mudah. Selanjutnya dapat disisipkan dalam media pembelajaran kimia. Tutorial berupa video untuk mengefektifkan MarvinSkecth dapat dilihat atau diunduh dari sini. MarvinSketch adalah software kimia hanya untuk visualisasi rumus struktur kimia yang gratis, bisa dijalankan di sistem operasi Windows dan Linux juga MacOS. Mau mencicipinya silahkan unduh dari web ChemAxon ini.

      Sumber : 
      http://urip.wordpress.com/software-kimia-gratis/

Link Tentang Kimia Komputasi

bagi kalian yang ingin mengetahui link / web apa saja  penyedia software kimia komputasi dapat mengunjungi beberapa link di bawah ini:
a. http://scistore.cambridgesoft.com/chemoffice/?cid=49&gclid=CITCt-T6tq0CFUca6wodxggfmA link ini menyediakan beberapa chemoffice mulai dari free, trial sampai pro tersedia di link ini. tentu jika kalian ingin pro harus membelinya.
b.http://www.ccl.net/chemistry/links/software/index.shtml
c. http://www.webmo.net/ link ini menyediakan sebuah software tentang kimia komputasi tapi sayang software ini hanya dapat diakses untuk    Windows 2000, XP,   Mac OS X,   Linux / Unix  
d. http://www.psc.edu/general/software/categories/computational_chemistry.php
e. http://www.computational-chemistry.co.uk/Molecular-modelling-and-visualisation.html
f. http://www.dr-software.com/english/DR-Software,Inc.htm
g. http://www.redbrick.dcu.ie/~noel/linux4chemistry/

analisa oleh ChemOffice


ChemDraw pro versi 8.0 merupakan salah satu program aplikasi dari Chem Office, untuk menggambar struktur 2D dalam bidang ilmu kimia, terutama kimia organik, biokimia, dan polimer. Software ini dapat membantu anda dalam menggambar struktur kimia dengan berbagai fasilitasnya, hanya dengan mengkliknya, tool tersebut akan bekerja untuk anda.

Tool-tool dalam ChemDraw mewakili berbagai macam bentuk ikatan yang dapat anda susun menjadi struktur kimia sehingga tidaklah sulit bagi anda untuk menggambarkan struktur yang kompleks sekalipun, bahkan juga dalam berbagai bentuk konformasi dan dalam bentuk proyeksi.

Struktur-struktur tertentu yang telah umum dapat digambar secara langsung dengan mengklik tool, seperti struktur cincin benzena, siklopentana, sikloheksana dan senyawa siklis yang lain. Tool dalam ChemDraw juga menyajikan gambar struktur untuk asam amino, DNA, dan RNA yang terdapat dalam template, anda tinggal klik, membawanya ke layar, drag, maka jadilah gambar struktur anda.

ChemDraw merupakan program aplikasi untuk menggambar yang di lengkapi dengan tool-tool sehingga pengguna dapat dengan mudah membuat gambar yang diinginkannya hanya dengan mengklik tool-tool tersebut, dengan ChemDraw anda tidak akan mengalami kesulitan di dalam membuat struktur kimia. Hal ini tentu sangat membantu anda dalam menulis skripsi, thesis, karya ilmiah, ataupun jurnal, bahkan anda juga dapat mengkomunikasikan struktur yang anda miliki ke dunia web jika komputer anda di lengkapi dengan program aplikasi ChemOffice yang lain. Gambar yang telah anda buat juga dapat dengan mudah dicetak atau dibawah ke dalam program aplikasi lain seperti Ms. Word.

ChemDraw juga dapat menganalisis struktur kimia yang telah kita gambar dengan menggunakan Analys Struktur pada menu Structure, di sini anda dapat mengetahui sifat-sifat fisik struktur tersebut, misalnya, titik didih, titik leleh, berat molekul, temperatur, tekanan, dll.


sumber : http://faijalchemistry.blogspot.com/2010/06/chemdraw-pro-versi-8.html

SIMULASI EFEKTIVITAS SENYAWA OBAT ERITROMISIN F DAN Δ6,7 ANHIDROERITROMISIN F DALAM LAMBUNG MENGGUNAKAN METODE SEMIEMPIRIS AUSTIN MODEL 1 (AM1)
Pembuatan senyawa awal
Untuk  melakukan  penelitian  ini  dibutuhkan  struktur  3  dimensi  dari  senyawa  eritromisin  F dan  Δ6,7anhidro-eritromisin  F  dengan  bentuk  serta  konfigurasi  yang  tepat.  Struktur  dasar eritromisin  F  diambil  dari  internet  (http://www.rcsb.org/pdb/)  dalam  bentuk  Protein  Data  Bank (*.pdb).  Struktur  tersebut  kemudian  disimpan  dalam  bentuk  *.hin  dan  selanjutnya  digunakan sebagai senyawa awal pada penelitian ini.
Optimasi geometri
Sebelum  dilakukan  optimasi  geometri,  perangkat  lunak  HyperChem  diatur  terlebih  dahulu menggunakan  metode  perhitungan  Semiempiris  AM1  melalui  menu  Setup.  Selanjutnya  dipilih Menu  Compute,  Geometry  Optimization  dan  kemudian  diklik  OK.  Setiap  akan  melakukan perhitungan  apapun  dibuat  log  files  untuk  mencatat  proses  yang  terjadi.  Optimasi  geometri dilakukan  untuk  memperoleh  struktur  yang  paling  stabil  dari  senyawa  eritromisin  F  dan Δ6,7anhidroeritromisin F.
Analisa struktur seyawa obat 
Untuk  melakukan  analisis  struktur  senyawa  eritromisin  F  dan  Δ6,7 anhidro-eritromisin  F dibutuhkan  data  energi  log  files  yang  telah  diperoleh  dari  hasil  optimasi  geometri.  Selanjutnya dicari panjang ikatan, sudut, serta momen dipol dari beberapa atom pada kedua senyawa tersebut. Mengacu pada data yang diperoleh, dilakukan analisis untuk mencari sifat-sifat struktur senyawa tersebut.
Mekanisme dekomposisi eritromisin F
Mekanisme reaksi dekomposisi senyawa eritromisin F dapat diprediksi dengan menghitung energi  ikat  dari  senyawa  obat  tersebut  dan  senyawa-senyawa  turunan  yang  mungkin  terjadi. Senyawa  turunan  tersebut  dirancang  dengan  berpedoman  pada  struktur  awal  eritromisin  F  yang telah  diperoleh  dari  langkah  sebelumnya.  Senyawa  dengan  energi  paling  rendah  dipilih  sebagai senyawa yang dipakai pada rancangan jalur mekanisme dekomposisi. Pemilihan senyawa dengan energi terendah berdasar pada kestabilannya diantara yang lain.
Mekanisme dekomposisi Δ6,7anhidro-eritromisin F
Mekanisme reaksi dekomposisi senyawa Δ6,7 anhidroeritromisin  F  dapat  diprediksi  dengan cara  yang  sama,  yaitu  menghitung  energi  ikat  dari  masing-masing  senyawa  obat  beserta turunannya.  Senyawa  turunan  tersebut  juga  dirancang  dengan  berpedoman  pada  struktur  awal Δ6,7anhidroeritromisin  F  yang  telah  ada.  Senyawa  dengan  energi  terendah  dipilih  untuk dimasukkan  dalam  jalur  mekanisme  reaksi  dekomposisi  sehingga  didapatkan  mekanisme  yang benar.

jika ingin mengetahui lebih lanjut tentang jurnal ini silahkan kunjungi sumber yang ada di bawah ini...
Sumber : http://journal.unnes.ac.id/index.php/sainteknol/article/download/343/326

Analisa oleh HyperChem


Input Struktur dan Manipulasi

1. Mengambar molekul dengan program ini relatif sederhana. Pilih unsur dari tabel periodik, kemudian di click dan ditarik dengan mouse. Dengan mouse kita dapat mengkontrol rotasi di sekitar ikatan, mengatur stereokimia molekul dan mengubah struktur.
2. Dengan mouse-controlled tools kita dapat melakukan seleksi, rotasi dan translasi serta mengubah ukuran struktur. Setting pada menu harus dimodifikasi terlebih dahulu untuk mengontrol operasi dari tools.
3. Untuk mengkonversi struktur 2D menjadi struktur 3D dapat dikerjakan dengan HyperChem’s model builder.
4. Penggunaan constraint terhadap struktur relatif mudah. Kita dapat melakukan constraint terhadap panjang ikatan, sudut ikatan, sudut torsi dan juga terhadap atom yang diinginkan.


Display Molekular (Molecular Display)
· Pilihan rendering : Ball-and-stickfused CPK spheres dengan pilihan shading and highlighting. JugavdW dots, cylinders dan overlapping spheres.
· Ribbon rendering untuk protein backbones, dengan pilihan sidechain display.
· 3D Isosurfaces atau 2D contour plots untuk: muatan total, kerapatan muatan, orbital molekul, kerapatan spin, potensial elektrostatik (ESP), ESP dipetakan pada 3D charge density surface.
· Pilihan isosurface rendering: wire mesh, Jorgensen-Salem, transparent dan solid surfacesGouraud shaded surface.
· Selama simulasi dapat ditampilkan rerata energi kinetik , energi potensial, energi total dan parameter molekul seperti panjang ikatan, sudut ikatan, dan sudut torsi.
· Animasi mode vibrasi dari spektra IR


Kimia Komputasi

Dengan HyperChem kita dapat mengeksplorasi model  energi permukaan potensial secara klasik atau kuantum dengan single point, optimasi geometri atau perhitungan dalam mencari keadaan transisi. Selain itu kita dapat juga mempelajari pengaruh gerakan termal dengan molecular dynamics, Langevin dynamics atau simulasi Metropolis Monte Carlo.



Jenis Perhitungan
Terdapat beberapa tipe perhitungan, antara lain kalkulasi single point, optimisasi geometri, frekuensi vibrasi, pencarian keadaan transisi, simulasi dinamika molekular, simulasi dinamika Langevin dan simulasi Monte Carlo.
1.   Perhitungan single point dapat digunakan untuk menentukan energi molekul dari struktur yang telah ditentukan (tanpa proses optimasi)
2. Perhitungan optimisasi geometri menggunakan algoritma minimisasi energi untuk mendapatkan struktur paling stabil. Tersedia 5 algoritma minimisasi.
3. Perhitungan frekuensi Vibrational dimaksudkan untuk mencari mode vibrasi normal dari suatu struktur teroptimisasi. Spektrum teroptimisasi dapat ditampilkan dan gerakan vibrasi yang berkaitan dengan transisi spesifik dapat dianimasikan.
4. Pencarian keadaan transisi dilakukan dengan menentukan struktur metastabil yang bersesuaian dengan keadaan transition menggunakan metode Eigenvector Following atau Synchronous Transit. Sifat-sifat molekulernya kemudian dapat dihitung. Dua metode untuk melokasikan keadaan transisi diimplementasikan di dalam HyperChem 5.
a) Metode Eigenvector Following sangat cocok digunakan untuk proses unimolekular atau setiap system molecular yang mode vibrasi naturalnya cenderung menuju ke suatu keadaan transition.
b) Metode Synchronous transit khususnya berguna jika reaktan dan produk sangat berbeda. Terdapat dua metodologi synchronous transit yang diimplementasikan di dalam HyperChem yaitu Linear synchronous Transit (LST) dan Quadratic Synchronous transit (QST).
5. Simulasi Molecular dynamics menghitung trajektori klasik untuk sistem molekular. Waktu pemanasan, keseimbangan dan pendinginan dapat diterapkan dalam simulasi ini dan juga dapat digunakan untuk proses-proses yang bergantung pada perubahan waktu. Simulasi dapat dilakukan pada energi konstan atau temperatur konstan.
6. Langevin dynamics simulations untuk memodelkan efek tumbukan pelarut tanpa memasukkan secara implicit molekul-molekul pelarut.
7. Simulasi Monte Carlo Metropolis berguna untuk mengeksplorasi konfigurasi yang mungkin dari suatu sistem dalam keadaan keseimbangan dan menentukan sifat sistem yang dinyatakan sebagai harga rata-rata untuk sekuruh system yang sudah berada dalam keadaan keseimbangan.

Sumber : Prof. Dr. Harno Dwi Pranowo, M.Si (Kimia Komputasi)